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1 Introduction
With the rising variety and complexity of industrial components and 
the need for tolerance and geometrical quality control, the use of 
computed tomography (CT) for metrology started to be investigated 
in the early 1990s [1]–[3]. Providing a high measurement point den-
sity, comparably short scan times and the ability to assess internal 
features non-destructively, it has since become the state-of-the-art 
in several areas of application [4]. Despite the progress made in re-
cent years, the investigation of highly attenuating or multi-material 
components remains a major challenge. As depicted in figure 1, the 
reconstructions of such components often show cupping, shading 
or streak artifacts. In general, these artifacts are caused by different 
physical effects that lead to a nonlinear realtionship between pro-
jection values and material intersection lengths, and thus, cannot 
  

 
be reconstructed exactly by analytic reconstruction algorithms. 
Among these effects, beam hardening, xray scattering, partial volu-
me effects and offfocal radiation are the most prominent ones [5]. 
Another common source of artifacts is the use of circular scan tra-
jectories in combination with a cone-beam setup. Since this trajec-
tory only allows for an exact CT reconstruction within the midplane, 
so-called cone-beam artifacts are introduced, especially in the peri-
phery of the reconstructed volume.
As CT artifacts often impair an accurate metrological assessment [6], 
artifact correction has become an active field of research. However, 
existing approaches are either optimized for a certain artifact, too 
computationally expensive to be applied routinely or they are res-
tricted to either single- or multi-material components only. To over-
come these drawbacks two promising approaches have been pro-
posed recently by the author: the so-called simulation-based artifact 
correction (SBAC) and the deep scatter estimation (DSE). While the 
SBAC provides a very general framework to correct for most CT arti-
facts, DSE enables real-time scatter estimation with similar accuracy 
as Monte Carlo simulations. In the following both approaches are 
briefly reviewed, focussing on basic concepts rather than implemen-
tation details. For a more comprehensive description, the reader is 
referred to the original publications (reference [7], [8], and [9]).

2. Related Work
Since the introduction of CT, there has been ongoing research on CT 
artifact correction. A brief overview of existing artifact correction ap-
proaches in general and scatter correction approaches in particular 
is given in the following section.

2.1  CT Artifact Correction
In general, artifact correction approaches can be divided into itera-
tive approaches, post- and precorrection approaches. Iterative ap-
proaches, which have become very popular in medical CT in recent 
years, try to solve the reconstruction problem in an iterative manner. 
To do so, they usually set up a forward model that predicts projec-
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Figure 1: Models (top row) and CT reconstructions (bottom row) of typical highly attenuating (left column) and
multi-material components (middle and right column). The corresponding CT reconstructions (bottom row) show
severe cupping, shading and streak artifacts which impair an accurate metrological assessment.

2 Related Work

Since the introduction of CT, there has been ongoing re-
search on CT artifact correction. A brief overview of ex-
isting artifact correction approaches in general and scatter
correction approaches in particular is given in the follow-
ing section.

2.1 CT Artifact Correction

In general, artifact correction approaches can be divided
into iterative approaches, post- and precorrection ap-
proaches.

Iterative approaches, which have become very popular
in medical CT in recent years, try to solve the reconstruc-
tion problem in an iterative manner. To do so, they usu-
ally set up a forward model that predicts projection data
based on an estimate of the CT image. This estimate is
then refined in every iteration step by calculating an up-
date according to the discrepancy between the prediction
and the measured projection data. This procedure is re-
peated until convergence is reached, i.e. the prediction fits
the measurement. Depending on the design of the forward
model, iterative approaches are able to account for the
most common CT artifacts [10]–[14]. Furthermore, they
allow to incorporate prior knowledge such as the shape of
the measured component or image sparsity for instance
[15]–[19]. However, the need for at least a few forward

and backprojections makes them computationally expen-
sive. Especially in metrological CT, which often deals with
very large data sets, this is currently a major limitation.

Postcorrection approaches are often used as a faster al-
ternative. These approaches apply pysically or empircally
motivated correction terms, to an analytic reconstruction.
Therefore, they typically set up models with a given num-
ber of open parameters that can potentially account for
a certain artifact. Subsequently, the open parameters are
adjusted such that an appropriate metric, sensitive to ar-
tifacts in image domain, is minimized [20]–[23]. Therefore,
no dedicated prior knowledge, such as the x-ray spectrum,
is required which can be seen as a further advantage over
iterative methods. More recently, the use of artificial neu-
ral networks has been proposed as another realization of
postcorrection approaches [24]–[26].

Besides being applied in image domain, correction terms
can also be applied in projection domain prior to the re-
construction. These precorrection approaches have been
proposed in several variants. Considering multi-material
components that contain metal, so-called metal artifact
reduction (MAR) algorithms are frequently applied. Ini-
tially MAR approaches were proposed for the correction
of artifacts caused by metal implants in medical CT [27].
Their basic principle relies on the identification of the
metal trace within the acquired projection data and its
subsequent replacement with some sort of interpolated
data [28]–[31]. The corrected projections are then recon-
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Figure 1: Models (top row) and CT reconstructions (bottom row) of typical 
highly attenuating (left column) and multi-material components (middle 
and right column). The corresponding CT reconstructions (bottom row) 
show severe cupping, shading and streak artifacts which impair an accu-
rate metrological assessment.

Computertomographie



 ZfP heute | Berlin 2020 76

tion data based on an estimate of the CT image. This estimate 
is then refined in every iteration step by calculating an update 
according to the discrepancy between the prediction and the 
measured projection data. This procedure is repeated until 
convergence is reached, i. e. the prediction fits the measure-
ment. Depending on the design of the forward model, iterative 
approaches are able to account for the most common CT arti-
facts [10]–[14]. Furthermore, they allow to incorporate prior 
knowledge such as the shape of the measured component or 
image sparsity for instance [15]–[19]. However, the need for 
at least a few forward and backprojections makes them com-
putationally expensive. Especially in metrological CT, which 
often deals with very large data sets, this is currently a major 
limitation.
Postcorrection approaches are often used as a faster alterna-
tive. These approaches apply physically or empircally moti-
vated correction terms, to an analytic reconstruction. There-
fore, they typically set up models with a given number of open 
parameters that can potentially account for a certain artifact. 
Subsequently, the open parameters are adjusted such that an 
appropriate metric, sensitive to artifacts in image domain, is 
minimized [20]–[23]. Therefore, no dedicated prior knowledge, 
such as the xray spectrum, is required which can be seen as 
a further advantage over iterative methods. More recently, the 
use of articial neural networks has been proposed as another 
realization of postcorrection approaches [24]–[26].
Besides being applied in image domain, correction terms can 
also be applied in projection domain prior to the reconstruc-
tion. These precorrection approaches have been proposed in 
several variants. Considering multi-material components that 
contain metal, socalled metal artifact reduction (MAR) algo-
rithms are frequently applied. Initially MAR approaches were 
proposed for the correction of artifacts caused by metal im-
plants in medical CT [27]. Their basic principle relies on the 
identification of the metal trace within the acquired projec-
tion data and its subsequent replacement with some sort of 
interpolated data [28]–[31]. The corrected projections are then 
reconstructed and the metal is reinserted into the CT image. 
While this strategy is potentially useful for multi-material com-
ponents with a small amount of metal [32], interpolation er-
rors may degrade the correction result in case of higher metal 
fractions.
The correction of single-material components, in contrast, 
often relies on approaches similar to water precorrection in 
clinical CT [33]. These approaches aim to map the measured 
projection data to ideal data which are proportional to inter-
section length through the object. This mapping is typically 
implemented by an analytic function or a look-up table that 
is either derived from theoretical considerations, i.e. by nu-
merical inversion of a certain physical model describing the 
data acquisition, or by performing calibration measurements 
of a known component [34], [35]. However, strictly speaking 
only beam hardening artifacts can be corrected using this ap-
proach. In case of other artifacts, such as xray scattering or 
offfocal radiation, there is no unique relationship between 
projection values and intersection lengths. Consequently,  
these effects have to be considered a priori.

2.2  Scatter Estimation and Scatter Correction
There are two typical strategies to reduce the impact of scat-
tered xrays on CT image quality: scatter suppression and scat-
ter estimation. The former approach is based on the use of 
additional hardware, such as anti-scatter grids or collimators, 
which are designed to reduce the number of scattered xrays 
reaching the detector [36]. Scatter estimation approaches, in 
contrast, aim at estimating the contribution of scattered xrays 
to the measured data, to subtract it subsequently [37]. One 
option to derive this estimate is to use dedicated hardware, 
e. g. primary modulation grids or beam blockers, which allow 
to distinguish between primary and scattered xrays [38]–[45]. 
Other approaches use softwarebased solutions that set up 
empirical, physical or consistency-based models that predict
or approximate xray scattering [21], [46]–[59].
The gold standard among these methods is Monte Carlo (MC) 
simulation which is able to model the entire physics of the CT 
data acquisition process, and thus, yields highly accurate scat-
ter estimates [37]. On the downside, MC simulations are very 
time-consuming and cannot be applied in real-time using con-
ventional hardware. Furthermore, they need prior information 
such as the material distribution and the density distribution 
that has to be estimated in advance [60].
Socalled kernelbased scatter estimation (KSE) approaches 
are often used as a faster alternative. Basically, there are two 
flavors of KSE approaches. The first one estimates scattered 
xrays as an integral transform of a scatter source term and 
a scatter propagation kernel [46], [47], [61]–[63]. The scatter 
source term, which is typically derived from a simplified theo-
retical model (e. g. only single scattering in forward direction is 
considered), represents the fraction of xrays that are scattered 
along a straight line from the xray source position to a certain 
detector element. The scatter propagation kernel reflects the 
spatial spreading of scattered xrays and is usually calibrated 
to fit reference measurements or MC simulations [55]. Since 
the multiplication of these two quantities represents the scat-
ter distribution for a single ray, the total scatter distribution is 
given as the sum of all rays.
Instead of using analytic models to approximate scattering 
along a certain ray, other KSE approaches perform needle-
beam MC simulations of primitive geometries, e. g. ellipsoids 
or cuboids, with varying dimensions [49], [51]–[53]. The cor-
responding scatter distributions are then stored as a look-up 
table. To estimate the xray scatter of a given measurement 
each detector pixel is assigned one of the precalculated nee
dle-beam scatter distributions according to a similarity metric. 
Summing the contribution of each needle beam, including cor-
rection terms that account for the shape of the actual object, 
then yields the total scatter distribution [53].
While being real-time capable, KSE approaches are typical-
ly less accurate than MC simulations. Furthermore, it can be 
challenging to calibrate the open parameters of these models 
in such a way that they apply to different acquisition condi
tions as well as to different components. So far, there is always 
a tradeoff between accuracy and computational performance 
that may be overcome by the deep scatter estimation as de-
scribed in section 4.
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3 Simulation-Based Artifact Correction (SBAC)
3.1 Basic Principle
Analytic CT reconstruction algorithms are based on the assumption 
that the projection value measured at detector position d corre-
sponds to the following line integral:

where s is the focal spot position and  ƒ is the CT image, i. e. the dis-
tribution of the attenuation coefficient. In that case,  ƒ can be recons-
tructed exactly from the set of all possible line integrals p:

where X−1 denotes the inverse xray transform operator which is typi-
cally implemented as filtered backprojection. 
However, due to the polychromatic xray spectrum, offfocal radia– 
tion, xray scattering and partial volume effects, the actual data 
acquisition process is not modeled appropriately by equation (2). 

Thus, applying the reconstruction operator X−1 to the measured pro-
jection data q does not yield the desired image  ƒ, but an image g 
containing artifacts a:
According to equation (3), a corrected image can be calculated by 
subtracting an estimate ã of the artifacts:

where p̃ and q̃ represent estimates of ideal and real projection data. 
As shown in figure 2, the SBAC derives these estimates by perfor-
ming CT simulations based on a prior model ƒprior (e. g. a CAD model 
or a segmentation Tg of the initial reconstruction) of the component. 
While ideal projection data can be calculated according to equation
(1) with  ƒ =  ƒprior, the main challenge of the SBAC is to model the 
actual data acquisition process as accurately as possible. To do so, 
precise models have been developed or existing models have been 
refined. A detailed description of these models that cover the gene-
ration of xrays, the effect and the determination of the focal spot 
distribution including offfocal radiation, the interaction of xray 
photons within the measured object as well as the xray detection 
process can be found in reference [7] and [9].
In a similar way, the SBAC can also account for conebeam artifacts 
by performing the ideal simulation as well as the corresponding re-
construction in parallel beam geometry. It has to be noted that in 
this case the difference between the ideal and the real simulation 
cannot be cal calculated in projection domain. In contrast to equa-
tion (4), the difference needs to be evaluated in image domain, i. e. 
the estimate of the artifacts is given by:

where X||
−1 represents the reconstruction operator in parallel beam 

geometry.

metal is reinserted into the CT image. While this strategy
is poten�ally useful for mul�-material components with a
small amount of metal [32], interpola�on errors may de-
grade the correc�on result in case of highermetal frac�ons.

The correc�on of single-material components, in con-
trast, o�en relies on approaches similar to water precor-
rec�on in clinical CT [33]. These approaches aim to map
the measured projec�on data to ideal data which are pro-
por�onal to intersec�on length through the object. This
mapping is typically implemented by an analy�c func�on or
a loo�-up table that is either derived from theore�cal con-
sidera�ons, i.e. by numerical inversion of a certain physical
model describing the data ac�uisi�on, or by performing cal-
ibra�on measurements of a �nown component [34], [35].
�owever, strictly spea�ing only beam hardening ar�facts
can be corrected using this approach. In case of other ar-
�facts, such as x-ray sca�ering or off-focal radia�on, there
is no uni�ue rela�onship between projec�on values and in-
tersec�on lengths. Conse�uently, these effects have to be
considered a priori.

2.2 �ca�er �s��a��n an� �ca�er ��rrec��n

There are two typical strategies to reduce the impact of
sca�ered x-rays on CT image �uality: sca�er suppression
and sca�er es�ma�on. The former approach is based on
the use of addi�onal hardware, such as an�-sca�er grids
or collimators, which are designed to reduce the number of
sca�ered x-rays reaching the detector [36]. Sca�er es�ma-
�on approaches, in contrast, aim at es�ma�ng the contri-
bu�on of sca�ered x-rays to themeasured data, to subtract
it subse�uently [3�]. �ne op�on to derive this es�mate is
to use dedicated hardware, e.g. primary modula�on grids
or beam bloc�ers, which allow to dis�nguish between pri-
mary and sca�ered x-rays [3�]–[45]. �ther approaches use
so�ware-based solu�ons that set up empirical, physical or
consistency-based models that predict or approximate x-
ray sca�ering [21], [46]–[59].

The gold standard among these methods is Monte Carlo
(MC) simula�on which is able to model the en�re physics
of the CT data ac�uisi�on process, and thus, yields highly
accurate sca�er es�mates [3�]. �n the downside, MC sim-
ula�ons are very �me-consuming and cannot be applied in
real-�me using conven�onal hardware. �urthermore, they
need prior informa�on such as the material distribu�on
and the density distribu�on that has to be es�mated in ad-
vance [60].

So-called �ernel-based sca�er es�ma�on (KSE) ap-
proaches are o�en used as a faster alterna�ve. �asically,
there are two flavors of KSE approaches. The first one es-
�mates sca�ered x-rays as an integral transform of a scat-
ter source term and a sca�er propaga�on �ernel [46], [4�],
[61]–[63]. The sca�er source term, which is typically de-

rived from a simplified theore�cal model (e.g. only single
sca�ering in forward direc�on is considered), represents
the frac�on of x-rays that are sca�ered along a straight line
from the x-ray source posi�on to a certain detector ele-
ment. The sca�er propaga�on �ernel reflects the spa�al
spreading of sca�ered x-rays and is usually calibrated to fit
reference measurements or MC simula�ons [55]. Since the
mul�plica�on of these two �uan��es represents the scat-
ter distribu�on for a single ray, the total sca�er distribu�on
is given as the sum of all rays.

Instead of using analy�c models to approximate scat-
tering along a certain ray, other KSE approaches perform
needle-beam MC simula�ons of primi�ve geometries, e.g.
ellipsoids or cuboids, with varying dimensions [49], [51]–
[53]. The corresponding sca�er distribu�ons are then
stored as a loo�-up table. To es�mate the x-ray sca�er of
a given measurement each detector pixel is assigned one
of the precalculated needle-beam sca�er distribu�ons ac-
cording to a similarity metric. Summing the contribu�on of
each needle beam, including correc�on terms that account
for the shape of the actual object, then yields the total scat-
ter distribu�on [53].

While being real-�me capable, KSE approaches are typ-
ically less accurate than MC simula�ons. �urthermore, it
can be challenging to calibrate the open parameters of
these models in such a way that they apply to different ac-
�uisi�on condi�ons as well as to different components.

So far, there is always a trade-off between accuracy and
computa�onal performance that may be overcome by the
deep sca�er es�ma�on as described in sec�on 4.

3 �i��la��n�Base� �r��ac� ��rrec��n ��B���

3.1 Basic Principle

�naly�c CT reconstruc�on algorithms are based on the as-
sump�on that the projec�on value measured at detector
posi�on ddd corresponds to the following line integral:

p(ddd) =
∫ 1

0
dλ f(sss+ λ · (ddd− sss)), (1)

where sss is the focal spot posi�on and f is the CT image, i.e.
the distribu�on of the a�enua�on coe�cient. In that case,
f can be reconstructed exactly from the set of all possible
line integrals p:

f = X−1p, (2)

where X−1 denotes the inverse x-ray transform operator
which is typically implemented as filtered bac�projec�on.

�owever, due to the polychroma�c x-ray spectrum, off-
focal radia�on, x-ray sca�ering and par�al volume effects,
the actual data ac�uisi�on process is not modeled appro-
priately by e�ua�on (2). Thus, applying the reconstruc�on
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Figure 2: Schematic of the SBAC workflow. An initial reconstruction g is used to generate a prior model. Based on that model, a real and an ideal simula-
tion is performed. Their difference represents the artifacts within the measurement and can be used to calculate a correction term for the initial recons-
truction.
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�igure �: Schema�c of the SBAC wor��ow. An ini�al reconstruc�on g is used to generate a prior model. Based on that
model, a real and an ideal simula�on is performed. Their difference represents the ar�facts within the measurement
and can be used to calculate a correc�on term for the ini�al reconstruc�on.

operator X−1 to the measured pro�ec�on data q does not
yield the desired image f, but an image g containing ar�-
facts a:

g = X−1q = X−1q+ X−1p− X−1p
= f+ X−1(q− p)
= f+ a, (3)

According to e�ua�on (3), a corrected image can be calcu-
lated by subtrac�ng an es�mate ã of the ar�facts:

fSBAC = g− ã = g− X−1(q̃− p̃), (4)

where p̃ and q̃ represent es�mates of ideal and real pro-
�ec�on data. As shown in �gure �, the SBAC derives these
es�mates by performing CT simula�ons based on a prior
model fprior (e.g. a CA� model or a segmenta�on Tg of
the ini�al reconstruc�on) of the component. �hile ideal
pro�ec�on data can be calculated according to e�ua�on (1)
with f = fprior, the main challenge of the SBAC is to model
the actual data ac�uisi�on process as accurately as possi-
ble. To do so, Precise models have been developed or ex-
is�ng models have been re�ned. A detailed descrip�on of

these models that cover the genera�on of x-rays, the ef-
fect and the determina�on of the focal spot distribu�on in-
cluding off-focal radia�on, the interac�on of x-ray photons
within the measured ob�ect as well as the x-ray detec�on
process can be found in reference [7] and [9].

In a similar way, the SBAC can also account for cone-
beam ar�facts by performing the ideal simula�on as well
as the corresponding reconstruc�on in parallel beam ge-
ometry. It has to be noted that in this case the difference
between the ideal and the real simula�on cannot be calcu-
lated in pro�ec�on domain. In contrast to e�ua�on (4), the
difference needs to be evaluated in image domain, i.e. the
es�mate of the ar�facts is given by:

ã = X−1q̃− X−1
|| p̃, (5)

where X−1
|| represents the reconstruc�on operator in par-

allel beam geometry.

3.2 ������������ ��� ���������

To demonstrate the poten�al of the SBAC, it was applied
to measurements of different single- and mul�-material
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yield the desired image f, but an image g containing ar�-
facts a:
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= f+ X−1(q− p)
= f+ a, (3)
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within the measured ob�ect as well as the x-ray detec�on
process can be found in reference [7] and [9].

In a similar way, the SBAC can also account for cone-
beam ar�facts by performing the ideal simula�on as well
as the corresponding reconstruc�on in parallel beam ge-
ometry. It has to be noted that in this case the difference
between the ideal and the real simula�on cannot be calcu-
lated in pro�ec�on domain. In contrast to e�ua�on (4), the
difference needs to be evaluated in image domain, i.e. the
es�mate of the ar�facts is given by:

ã = X−1q̃− X−1
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metal is reinserted into the CT image. While this strategy
is poten�ally useful for mul�-material components with a
small amount of metal [32], interpola�on errors may de-
grade the correc�on result in case of highermetal frac�ons.

The correc�on of single-material components, in con-
trast, o�en relies on approaches similar to water precor-
rec�on in clinical CT [33]. These approaches aim to map
the measured projec�on data to ideal data which are pro-
por�onal to intersec�on length through the object. This
mapping is typically implemented by an analy�c func�on or
a loo�-up table that is either derived from theore�cal con-
sidera�ons, i.e. by numerical inversion of a certain physical
model describing the data ac�uisi�on, or by performing cal-
ibra�on measurements of a �nown component [34], [35].
�owever, strictly spea�ing only beam hardening ar�facts
can be corrected using this approach. In case of other ar-
�facts, such as x-ray sca�ering or off-focal radia�on, there
is no uni�ue rela�onship between projec�on values and in-
tersec�on lengths. Conse�uently, these effects have to be
considered a priori.

2.2 �ca�er �s��a��n an� �ca�er ��rrec��n

There are two typical strategies to reduce the impact of
sca�ered x-rays on CT image �uality: sca�er suppression
and sca�er es�ma�on. The former approach is based on
the use of addi�onal hardware, such as an�-sca�er grids
or collimators, which are designed to reduce the number of
sca�ered x-rays reaching the detector [36]. Sca�er es�ma-
�on approaches, in contrast, aim at es�ma�ng the contri-
bu�on of sca�ered x-rays to themeasured data, to subtract
it subse�uently [3�]. �ne op�on to derive this es�mate is
to use dedicated hardware, e.g. primary modula�on grids
or beam bloc�ers, which allow to dis�nguish between pri-
mary and sca�ered x-rays [3�]–[45]. �ther approaches use
so�ware-based solu�ons that set up empirical, physical or
consistency-based models that predict or approximate x-
ray sca�ering [21], [46]–[59].

The gold standard among these methods is Monte Carlo
(MC) simula�on which is able to model the en�re physics
of the CT data ac�uisi�on process, and thus, yields highly
accurate sca�er es�mates [3�]. �n the downside, MC sim-
ula�ons are very �me-consuming and cannot be applied in
real-�me using conven�onal hardware. �urthermore, they
need prior informa�on such as the material distribu�on
and the density distribu�on that has to be es�mated in ad-
vance [60].

So-called �ernel-based sca�er es�ma�on (KSE) ap-
proaches are o�en used as a faster alterna�ve. �asically,
there are two flavors of KSE approaches. The first one es-
�mates sca�ered x-rays as an integral transform of a scat-
ter source term and a sca�er propaga�on �ernel [46], [4�],
[61]–[63]. The sca�er source term, which is typically de-

rived from a simplified theore�cal model (e.g. only single
sca�ering in forward direc�on is considered), represents
the frac�on of x-rays that are sca�ered along a straight line
from the x-ray source posi�on to a certain detector ele-
ment. The sca�er propaga�on �ernel reflects the spa�al
spreading of sca�ered x-rays and is usually calibrated to fit
reference measurements or MC simula�ons [55]. Since the
mul�plica�on of these two �uan��es represents the scat-
ter distribu�on for a single ray, the total sca�er distribu�on
is given as the sum of all rays.

Instead of using analy�c models to approximate scat-
tering along a certain ray, other KSE approaches perform
needle-beam MC simula�ons of primi�ve geometries, e.g.
ellipsoids or cuboids, with varying dimensions [49], [51]–
[53]. The corresponding sca�er distribu�ons are then
stored as a loo�-up table. To es�mate the x-ray sca�er of
a given measurement each detector pixel is assigned one
of the precalculated needle-beam sca�er distribu�ons ac-
cording to a similarity metric. Summing the contribu�on of
each needle beam, including correc�on terms that account
for the shape of the actual object, then yields the total scat-
ter distribu�on [53].

While being real-�me capable, KSE approaches are typ-
ically less accurate than MC simula�ons. �urthermore, it
can be challenging to calibrate the open parameters of
these models in such a way that they apply to different ac-
�uisi�on condi�ons as well as to different components.

So far, there is always a trade-off between accuracy and
computa�onal performance that may be overcome by the
deep sca�er es�ma�on as described in sec�on 4.

3 �i��la��n�Base� �r��ac� ��rrec��n ��B���

3.1 Basic Principle

�naly�c CT reconstruc�on algorithms are based on the as-
sump�on that the projec�on value measured at detector
posi�on ddd corresponds to the following line integral:

p(ddd) =
∫ 1

0
dλ f(sss+ λ · (ddd− sss)), (1)

where sss is the focal spot posi�on and f is the CT image, i.e.
the distribu�on of the a�enua�on coe�cient. In that case,
f can be reconstructed exactly from the set of all possible
line integrals p:

f = X−1p, (2)

where X−1 denotes the inverse x-ray transform operator
which is typically implemented as filtered bac�projec�on.

�owever, due to the polychroma�c x-ray spectrum, off-
focal radia�on, x-ray sca�ering and par�al volume effects,
the actual data ac�uisi�on process is not modeled appro-
priately by e�ua�on (2). Thus, applying the reconstruc�on
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�igure �: Schema�c of the SBAC wor��ow. An ini�al reconstruc�on g is used to generate a prior model. Based on that
model, a real and an ideal simula�on is performed. Their difference represents the ar�facts within the measurement
and can be used to calculate a correc�on term for the ini�al reconstruc�on.

operator X−1 to the measured pro�ec�on data q does not
yield the desired image f, but an image g containing ar�-
facts a:

g = X−1q = X−1q+ X−1p− X−1p
= f+ X−1(q− p)
= f+ a, (3)

According to e�ua�on (3), a corrected image can be calcu-
lated by subtrac�ng an es�mate ã of the ar�facts:

fSBAC = g− ã = g− X−1(q̃− p̃), (4)

where p̃ and q̃ represent es�mates of ideal and real pro-
�ec�on data. As shown in �gure �, the SBAC derives these
es�mates by performing CT simula�ons based on a prior
model fprior (e.g. a CA� model or a segmenta�on Tg of
the ini�al reconstruc�on) of the component. �hile ideal
pro�ec�on data can be calculated according to e�ua�on (1)
with f = fprior, the main challenge of the SBAC is to model
the actual data ac�uisi�on process as accurately as possi-
ble. To do so, Precise models have been developed or ex-
is�ng models have been re�ned. A detailed descrip�on of

these models that cover the genera�on of x-rays, the ef-
fect and the determina�on of the focal spot distribu�on in-
cluding off-focal radia�on, the interac�on of x-ray photons
within the measured ob�ect as well as the x-ray detec�on
process can be found in reference [7] and [9].

In a similar way, the SBAC can also account for cone-
beam ar�facts by performing the ideal simula�on as well
as the corresponding reconstruc�on in parallel beam ge-
ometry. It has to be noted that in this case the difference
between the ideal and the real simula�on cannot be calcu-
lated in pro�ec�on domain. In contrast to e�ua�on (4), the
difference needs to be evaluated in image domain, i.e. the
es�mate of the ar�facts is given by:

ã = X−1q̃− X−1
|| p̃, (5)

where X−1
|| represents the reconstruc�on operator in par-

allel beam geometry.

3.2 ������������ ��� ���������

To demonstrate the poten�al of the SBAC, it was applied
to measurements of different single- and mul�-material

4
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3.2 Measurements and Evaluation
To demonstrate the potential of the SBAC, it was applied to mea-
surements of different single and multimaterial components (see 
figure 3). All measurements were conducted using a commercial in-
dustrial CT system (Werth TomoScope®  200) that is equipped with a 
225 kV microfocus xray tube and a 3888 x 3072 flat detector with 
a pixel size of 149.6 x 149.6  ɥm in a 2 x 2 binning mode. The corre-
sponding measurement parameters as well as the maximum and the 
mean intersection lengths are summarized in table 1.
Considering the single-material measurements, the focus of the eva-
luation was set on dimensional accuracy. Therefore, surface meshes 
extracted from CT reconstructions with and without SBAC were com-
pared against (almost) artifact free reference measurements. In case 
of the die-cast zinc hinge, the corresponding reference measure- 
ments were performed using a commercial coordinate measurement 
machine (Werth Touch Probe TP 200) with a maximum permissible 
probing error of 2 ɥm. In case of the plastic inhalator, which mainly 
shows cone-beam artifacts, two CT measurements were performed. 
One with a large cone-angle and one with a small cone-angle. 
While the SBAC was applied to the large cone-angle measurement, 
the small cone-angle measurement which showed only minor arti-
facts was used as reference.
In contrast to the single-material measurements, an artifact free re-
ference measurement could not be performed for the multi-material 
components. Therefore, the performance of the SBAC was evaluated 

qualitatively by a comparison to two state-of-the-art artifact correc-
tion approaches: the normalized matal artifact reduction (NMAR) 
[29] and the iTV algorithm [64]. As described in section 2, the NMAR 
belongs to the inpainting-based correction approaches that identi-
fy the metal trace within the acquired projection data and replace 
it by interpolated data. The iTV algorithm, in contrast, solves the 
reconstruction problem iteratively including a total variation (TV) 
constraint.
 
3.3  Results
3.3.1  Single-Material Components
CT reconstructions of the single-material components are shown 
in figure 4. While the uncorrected reconstruction of the zinc hinge 
shows strong cupping and shading artifacts, the one of the plastic 
inhalator is mainly corrupted by cone-beam artifacts. In any case, 
almost all artifacts are removed after applying the SBAC.
Since the visual impression does not necessarily correlate with the 
dimensional accuracy of the CT measurement, a dimensional evalu-
ation was performed as well. For this purpose, surface meshes were 
extracted from the CT reconstructions and compared against the  

Table 1: Acquisition parameters of single-material and multi-material measurements as well as the mean and the maximum intersection length (L). 
It has to be noted that in case of the multi-material components these measures only refer to the metal intersection length.

Sample Voltage Current Prefilter Projections 
per 360º

Pixel size at 
isocenter 

Mean L / Max. L

Plug 1 225 kV 170 ɥA 1.2 mm Sn 1200 41 ɥm 3.0 mm / 15.9 mm

Luster terminal 225 kV 170 ɥA 1.2 mm Sn 1200 41 ɥm 4.9 mm / 29.8 mm

Inhalator 160 kV 90 ɥA 0.5 mm Al 800 80 ɥm 4.3 mm / 42.6 mm

Plug 2 225 kV 170 ɥA 1.2 mm Sn 1200 25 ɥm 1.1 mm / 6.8 mm

Zinc hinge 215 kV 180 ɥA 1.0 mm Sn 800 43 ɥm 3.8 mm / 20.5 mm

Table 1: Acquisition parameters of single-material and multi-material measurements as well as the mean and the
maximum intersection length (L). It has to be noted that in case of the multi-material components these measures
only refer to the metal intersection length.

Sample Voltage Current Prefilter
Projections
per 360◦

Pixel size at
isocenter

Mean L / Max. L

Plug 1 225 kV 170 �A 1.2 mm Sn 1200 41 �m 3.0 mm / 15.9 mm
Luster terminal 225 kV 170 �A 1.2 mm Sn 1200 41 �m 4.9 mm / 29.8 mm
Inhalator 160 kV 90 �A 0.5 mm Al 800 80 �m 4.3 mm / 42.6 mm
Plug 2 225 kV 170 �A 1.2 mm Sn 1200 25 �m 1.1 mm / 6.8 mm
Zinc hinge 215 kV 180 �A 1.0 mm Sn 800 43 �m 3.8 mm / 20.5 mm

3.2 Measurements and Evaluation

To demonstrate the potential of the SBAC, it was applied
to measurements of different single- and multi-material
components (see figure 3). All measurements were con-
ducted using a commercial industrial CT system (Werth
TomoScope R© 200) that is equipped with a 225 kV micro-
focus x-ray tube and a 3888 × 3072 flat detector with a
pixel size of 149.6 × 149.6 �m in a 2 × 2 binning mode.
The corresponding measurement parameters as well as the
maximum and the mean intersection lengths are summa-
rized in table 1.
Considering the single-material measurements, the fo-

cus of the evaluation was set on dimensional accuracy.
Therefore, surface meshes extracted from CT reconstruc-
tions with and without SBAC were compared against (al-
most) artifact free reference measurements. In case of the
die-cast zinc hinge, the corresponding reference measure-
ments were performed using a commercial coordinate mea-
surement machine (Werth Touch Probe TP 200) with a
maximum permissible probing error of 2 �m. In case of
the plastic inhalator, which mainly shows cone-beam arti-
facts, two CT measurements were performed. One with a
large cone-angle and one with a small cone-angle. While
the SBAC was applied to the large cone-angle measure-
ment, the small cone-angle measurement which showed
only minor artifacts was used as reference.
In contrast to the single-material measurements, an

artifact free reference measurement could not be per-
formed for the multi-material components. Therefore,
the performance of the SBAC was evaluated qualitatively
by a comparison to two state-of-the-art artifact correc-
tion approaches: the normalized matal artifact reduction
(NMAR) [29] and the iTV algorithm [64]. As described
in section 2, the NMAR belongs to the inpainting-based
correction approaches that identify the metal trace within
the acquired projection data and replace it by interpo-
lated data. The iTV algorithm, in contrast, solves the
reconstruction problem iteratively including a total varia-
tion (TV) constraint.

Figure 3: Photograph of the components used for testing
the performance of the SBAC. 1. Electrical plug 1, 2.
Luster terminal, 3. Plastic inhalator, 4. Electrical plug 2,
5. Die-cast zinc hinge.

3.3 Results

3.3.1 Single-Material Components

CT reconstructions of the single-material components are
shown in figure 4. While the uncorrected reconstruction of
the zinc hinge shows strong cupping and shading artifacts,
the one of the plastic inhalator is mainly corrupted by
cone-beam artifacts. In any case, almost all artifacts are
removed after applying the SBAC.

Since the visual impression does not necessarily corre-
late with the dimensional accuracy of the CT measure-
ment, a dimensional evaluation was performed as well.
For this purpose, surface meshes were extracted from the
CT reconstructions and compared against the reference
measurements described in section 3.2. The correspond-
ing results are shown in figure 5. In case of the die-cast
zinc hinge, there are large deviations from the tactile refer-
ence measurement that exceed the tolerances specified by
the manufacturer by up to 400 %. These deviations are re-
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Figure 3: Photograph of the components used for testing the performance 
of the SBAC. 1. Electrical plug 1, 2. Luster terminal, 3. Plastic inhalator,  
4. Electrical plug 2, 5. Die-cast zinc hinge.
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Figure 4: Reconstruction of the measured die-cast zinc
hinge (top, C = 0.08 mm−1 / W = 0.20 mm−1) and the
inhalator (bottom, C = 0.00 mm−1 / W = 0.10 mm−1)
without and with simulation-based artifact correction (left
and right).

duced to well below 60 % when using the SBAC, indicating
the high accuracy of the proposed approach (note that the
deviations along the edges of the component result from
missing sample points of the tactile measurement).

The evaluation of the inhalator measurement demon-
strates the potential of the SBAC for cone-beam arti-
fact correction. Here, the surface meshes were compared
against a surface mesh calculated from a CT measurement
with a narrow cone-angle. Without correction there are
deviations, especially in the periphery of the field of mea-
surement where the cone-angle is large, that exceed the
tolerances of the manufacturer by more than 200 %. Ap-
plying the SBAC reduces these deviations to values well
below values of 40 %.

3.3.2 Multi-Material Components

The correction of multi-material components was evalu-
ated for three typical components with different metal
fractions or metal intersection lengths, respectively (see
table 1). Since multi-material components cannot be as-
sessed entirely using a tactile probe, two commonly used
artifact correction algorithms, NMAR and an iterative re-
construction with TV regularization, were implemented
as a reference. The corresponding CT reconstructions as
well as an analytic reconstruction and the SBAC result
are shown in figure 6.
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Figure 5: Dimensional evaluation of the CT measurement
of the die-cast zinc hinge (top) and the inhalator (bot-
tom) with and without simulation-based artifact correc-
tion. The color scale refers to the tolerances specified by
the manufacturer. Here, 100 % and -100 % are the maxi-
mum acceptable deviations of the CT measurement from
the reference measurement.

As expected, the presence of metal leads to severe
streak artifacts in the analytic reconstruction. In con-
trast to measurements with small metal fractions, where
the NMAR usually yields a considerable improvement of
image quality, the correction of the present measurements
is rather poor. This can be explained by the fact that the
metal trace covers a large area of the projections. As a
result, the interpolation approach used by the NMAR al-
gorithm fails and even new artifacts are introduced to the
CT reconstruction. Similarly, the iterative reconstruction
approach does not manage to remove streak artifacts but
leads to a small improvement only. In contrast, the SBAC
removes almost all artifacts and yields CT volumes that
allow for a clear discrimination between plastic and metal.

6

Figure 4: Reconstruction of the measured die-cast zinc hinge  
(top, C = 0.08 mm−1 / W = 0.20 mm−1) and the inhalator (bottom,  
C = 0.00 mm−1 / W = 0.10 mm−1) without and with simulation-based  
artifact correction (left and right).
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reference measurements described in section 3.2. The corresponding 
results are shown in figure 5. In case of the diecast zinc hinge, the-
re are large deviations from the tactile reference measurement that 
exceed the tolerances specified by the manufacturer by up to 400 %. 
These deviations are reduced to well below 60 % when using the  

SBAC, indicating the high accuracy of the proposed approach (note 
that the deviations along the edges of the component result from 
missing sample points of the tactile measurement).
The evaluation of the inhalator measurement demonstrates the 
potential of the SBAC for cone-beam artifact correction. Here, the 
surface meshes were compared against a surface mesh calculated 
from a CT measurement with a narrow cone-angle. Without correc-
tion there are deviations, especially in the periphery of the field of 
measurement where the coneangle is large, that exceed the tole-
rances of the manufacturer by more than 200 %. Applying the SBAC 
reduces these deviations to values well below values of 40 %.

3.3.2  Multi-Material Components
The correction of multi-material components was evaluated for 
three typical components with different metal fractions or metal 
intersection lengths, respectively (see table 1). Since multimaterial 
components cannot be assessed entirely using a tactile probe, two 
commonly used artifact correction algorithms, NMAR and an itera
tive reconstruction with TV regularization, were implemented as a 
reference. The corresponding CT reconstructions as well as an ana-
lytic reconstruction and the SBAC result are shown in figure 6.
As expected, the presence of metal leads to severe streak artifacts 
in the analytic reconstruction. In contrast to measurements with 
small metal fractions, where the NMAR usually yields a considerable 
improvement of image quality, the correction of the present mea-
surements is rather poor. This can be explained by the fact that the 
metal trace covers a large area of the projections. As a result, the 
interpolation approach used by the NMAR algorithm fails and even 
new artifacts are introduced to the CT reconstruction. Similarly, 
the iterative reconstruction approach does not manage to remove 
streak artifacts but leads to a small improvement only. In contrast, 
the SBAC removes almost all artifacts and yields CT volumes that 
allow for a clear discrimination between plastic and metal.

Figure 5: Dimensional evaluation of the CT measurement of the die-cast 
zinc hinge (top) and the inhalator (bottom) with and without simulation-
based artifact correction. The color scale refers to the tolerances specified 
by the manufacturer. Here, 100 % and -100 % are the maximum accepta-
ble deviations of the CT measurement from the reference measurement.
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Figure 6: CT reconstructions of two different multi-material plugs (top row, C = 0.012 mm−1 / W = 0.030 mm−1,
middle row C = 0.02 mm−1 / W = 0.06 mm−1) and a luster terminal (bottom row, C = 0.03 mm−1 / W = 0.10
mm−1).

4 Deep Scatter Estimation (DSE)

4.1 Basic Principle

Existing scatter estimation approaches that are real-time
capable usually have the drawback of being restricted to
a predefined model that is based on simplified assump-
tions and approximations of the x-ray scattering process.
As a result, they often do not generalize well to arbitrary
samples, and may not be accurate enough. More sophisti-
cated approaches such as Monte Carlo (MC) simulations,
however, are too slow to be applied routinely. To combine
both, accuracy and computational performance, the so-
called deep scatter estimation (DSE) has been proposed
recently by the author [7], [9]. The basic idea of DSE is
to train a deep convolutional neural network (DCNN) to
reproduce MC scatter estimates. Therefore, DSE uses a
U-net like neural network as shown in figure 7 [65], and

determines it’s open parameters θ by minimizing the fol-
lowing loss function:

θ = argmin
θ

K ·
∑
n

∣∣∣∣
DSE(ψn,θ)− SMC,n

SMC,n

∣∣∣∣ , (6)

where K is a normalization constant, n the sample index,
ψn the corresponding input to the network, and SMC,n

the MC scatter estimate. Since DCNNs can be imple-
mented efficiently on a GPU, DSE can be used to perform
the mapping ψ → SMC in real-time once the network is
trained.

It has to be noted that DSE was trained and tested us-
ing different input functions ψ, namely ψ = e−p, ψ = p,
and ψ = p · e−p. While e−p corresponds to the normalized
intensities and p to their negative logarithm, p · e−p rep-
resents an analytic estimate of forward scattering that is
often used by kernel-based scatter estimation approaches

7

Figure 6: CT reconstructions of two different  
multi-material plugs (top row,  
C = 0.012 mm−1 / W = 0.030 mm−1,  
middle row C = 0.02 mm−1 / W = 0.06 mm−1) and  
a luster terminal (bottom row,  
C = 0.03 mm−1 / W = 0.10  mm−1).
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4.  Deep Scatter Estimations
4.1 Basic Principle
Existing Scatter estimation approaches that are realtime capable 
usually have the drawback of being restricted to a predefined model 
that is based on simplified assumptions and approximations of the 
xray scattering process. As a result, they often do not generalize well 
to arbitrary samples, and may not be accurate enough. More sophis-
ticated approaches such as Monte Carlo (MC) simulations, however, 
are too slow to be applied routinely. To combine both, accuracy and 
computational performance, the so-called deep scatter estimation 
(DSE) has been proposed recently by the author [7], [9]. The basic 
idea of DSE is to train a deep convolutional neural network (DCNN) 
to reproduce MC scatter estimates. Therefore, DSE uses a Unet like 
neural network as shown in figure 7 [65], and determines it’s open 
parameters Ө by minimizing the following loss function:

where K is a normalization constant, n the sample index, ψn the cor-
responding input to the network, and SMC,n the MC scatter estimate. 
Since DCNNs can be implemented efficiently on a GPU, DSE can be 
used to perform the mapping ψ → SMC in real-time once the network 
is trained.
It has to be noted that DSE was trained and tested using different 
input functions ψ, namely ψ = e−p, ψ = p, and ψ = p · e−p. While e−p 
corresponds to the normalized intensities and p to their negative lo-
garithm, p · e−p represents an analytic estimate of forward scattering 
that is often used by kernelbased scatter estimation approaches 
[47]. Since DSE performed best using the p · e−p input, only these re-
sults are shown here. For a more comprehensive evaluation inclu-
ding different inputs, the reader is referred to reference [9]

4.2. Simulation Study
Considering a certain scatter estimation approach it is advantageous 
if it can be applied to different components and different acquisi-
tion conditions without major adjustments. The potential of DSE to 
do so, was investigated using CT simulations based on the models  

 
 
shown in figure 8. Given the prior model, artificial projections were 
generated as:

with I being the polychromatic forward projection of the prior mo-
del, Np being Poisson distributed noise, I0 being the flat field image, 
and SMC being the distribution of scattered xrays that was calcula-
ted using our inhouse Monte Carlo software. For each component 
a training data set and a testing data set was simulated according 
to the parameters given in table 2. To ensure that the training data 
does not resemble the testing data, it was generated using different 
tube voltages, different tilt angles of the component and different 
scaling factors.

4.3  Measurements
To test the application of DSE to real data, measurements of an alu-
minum profile were performed at our inhouse tabletop CT system 
which is equipped with a Varian 4030 flat detector and a Hamamat-
su microfocus xray source. There are several strategies to generate 
suitable training data for these measurements. Probably the most 
accurate way is to derive the training data from reference measure-
ments, e.g. measurements with and without anti-scatter grid or with 
and without collimation. However, practically it is difficult to acquire 
a huge amount of data following this strategy. Therefore, simulated 
training data were generated using the prior models shown in figure 
8. In contrast to the simulation study described in the previous sec-
tion, the simulations were designed to resemble the measurement 
data in terms of the acquisition geometry and the acquisition condi-
tions using the models that have been developed for the SBAC (see 
section 3).

4.4 Evaluation
The generalization of DSE to different components was evaluated 
using simulated data (see section 4.2). Therefore, different training 
data sets were generated: one containing the training data of all 
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Figure 6� CT reconstruc�ons of two di�erent mul�-material plugs (top row, C = 0.012 mm−1 / W = 0.030 mm−1, middle
row C = 0.02 mm−1 / W = 0.06 mm−1) and a luster terminal (bo�om row, C = 0.03 mm−1 / W = 0.10 mm−1).

4 �eep �ca�er �s��a��n �����

4.1 Basic Principle

Exis�ng sca�er es�ma�on approaches that are real-�me
capable usually have the drawback of being restricted to a
predefined model that is based on simplified assump�ons
and approxima�ons of the x-ray sca�ering process. �s a re-
sult, they o�en do not generalize well to arbitrary samples,
and may not be accurate enough. More sophis�cated ap-
proaches such as Monte Carlo (MC) simula�ons, however,
are too slow to be applied rou�nely. To combine both, ac-
curacy and computa�onal performance, the so-called deep
sca�er es�ma�on (DSE) has been proposed recently by the
author [7], [9]. The basic idea of DSE is to train a deep con-
volu�onal neural network (DC��) to reproduce MC sca�er
es�mates. Therefore, DSE uses a U-net like neural network
as shown in figure 7 [65], and determines it’s open param-

eters θ by minimizing the following loss func�on�

θ = argmin
θ

K ·
∑
n

����
DSE(ψn,θ)− SMC,n

SMC,n

���� , (6)

where K is a normaliza�on constant, n the sample index,
ψn the corresponding input to the network, and SMC,n the
MC sca�er es�mate. Since DC��s can be implemented ef-
ficiently on a GPU, DSE can be used to perform themapping
ψ → SMC in real-�me once the network is trained.

It has to be noted that DSE was trained and tested us-
ing di�erent input func�ons ψ, namely ψ = e−p, ψ = p,
andψ = p · e−p. While e−p corresponds to the normalized
intensi�es and p to their nega�ve logarithm, p · e−p rep-
resents an analy�c es�mate of forward sca�ering that is
o�en used by kernel-based sca�er es�ma�on approaches
[47]. Since DSE performed best using the p ·e−p input, only
these results are shown here. For a more comprehensive
evalua�on including di�erent inputs, the reader is referred
to reference [9].
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Feature dimensions:

Number of features  of the convolutional layer:
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3 × 3 Convolution (stride = 2), ReLU 2 × 2 Upsampling1 × 1 Convolution (stride = 1), ReLU3 × 3 Convolution (stride = 1), ReLU

Depth concatenate

�igure 7: �rchitecture of the ��� deep convolu�onal neural networ�. �ote that the networ� does not ta�e the full si�e
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4.2 ��mu�a��n �tu��

Considering a certain sca�er es�ma�on approach it is ad-
vantageous if it can be applied to different components
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ments. The poten�al of ��� to do so, was inves�gated us-
ing CT simula�ons based on the models shown in figure 8.
�iven the priormodel, ar�ficial pro�ec�onswere generated
as:

psim = − ln

(
I+ Np + SMC

I0

)
, (7)

with I being the polychroma�c forward pro�ec�on of the
prior model, Np being Poisson distributed noise, I0 being
the flat field image, and SMC being the distribu�on of scat-
tered x-rays that was calculated using our in-house Monte
Carlo so�ware. �or each component a training data set and
a tes�ng data set was simulated according to the parame-
ters given in table 2. To ensure that the training data does
not resemble the tes�ng data, it was generated using dif-
ferent tube voltages, different �lt angles of the component
and different scaling factors.

4.3 Measurements

To test the applica�on of ��� to real data, measurements of
an aluminum profile were performed at our in-house table-
top CT systemwhich is equippedwith a Varian 4030 flat de-
tector and a Hamamatsu micro-focus x-ray source. There
are several strategies to generate suitable training data for
thesemeasurements. Probably themost accurate way is to
derive the training data from referencemeasurements, e.g.
measurements with and without an�-sca�er grid or with
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�igure 8: C�� models that were used for the genera�on of
ar�ficial CT data.

and without collima�on. However, prac�cally it is di�cult
to acquire a huge amount of data following this strategy.
Therefore, simulated training data were generated using
the prior models shown in figure 8. In contrast to the sim-
ula�on study described in the previous sec�on, the simula-
�ons were designed to resemble the measurement data in
terms of the acquisi�on geometry and the acquisi�on con-
di�ons using the models that have been developed for the
���C (see sec�on 3).

4.4 ��a�ua��n

The generali�a�on of ��� to different components was
evaluated using simulated data (see sec�on 4.2). There-
fore, different training data sets were generated: one con-
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Figure 7: Architecture of the DSE deep convolutional neural network. Note that the network does not take the full
size projection data as input, but a downsampled 256 × 256 version. Thus, the DSE scatter estimate needs to be
upsampled prior to scatter correction.

[47]. Since DSE performed best using the p · e−p input,
only these results are shown here. For a more compre-
hensive evaluation including different inputs, the reader is
referred to reference [9].

4.2 Simulation Study

Considering a certain scatter estimation approach it is ad-
vantageous if it can be applied to different components
and different acquisition conditions without major adjust-
ments. The potential of DSE to do so, was investigated
using CT simulations based on the models shown in fig-
ure 8. Given the prior model, artificial projections were
generated as:

psim = − ln

(
I +Np + SMC

I0

)
, (7)

with I being the polychromatic forward projection of the
prior model, Np being Poisson distributed noise, I0 being
the flat field image, and SMC being the distribution of
scattered x-rays that was calculated using our in-house
Monte Carlo software. For each component a training data
set and a testing data set was simulated according to the
parameters given in table 2. To ensure that the training
data does not resemble the testing data, it was generated
using different tube voltages, different tilt angles of the
component and different scaling factors.

4.3 Measurements

To test the application of DSE to real data, measurements
of an aluminum profile were performed at our in-house

TV1: Compressor wheel (Ti) TV2: Cylinder head (Al) TV3: Casting (Al)

TV4: Cassette (Fe) TV5: Profile (Al) TV6: Impeller (Fe)

50 mm

Figure 8: CAD models that were used for the generation
of artificial CT data.

table-top CT system which is equipped with a Varian 4030
flat detector and a Hamamatsu micro-focus x-ray source.
There are several strategies to generate suitable training
data for these measurements. Probably the most accurate
way is to derive the training data from reference measure-
ments, e.g. measurements with and without anti-scatter
grid or with and without collimation. However, practi-
cally it is difficult to acquire a huge amount of data fol-
lowing this strategy. Therefore, simulated training data
were generated using the prior models shown in figure 8.
In contrast to the simulation study described in the previ-
ous section, the simulations were designed to resemble the
measurement data in terms of the acquisition geometry
and the acquisition conditions using the models that have
been developed for the SBAC (see section 3).
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Figure 7: Architecture of the DSE deep convolutional neural network. Note that the network does not take the full size projection data 
as input, but a downsampled 256 x 256 version. Thus, the DSE scatter estimate needs to be upsampled prior to scatter correction.
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components, one containing the training data of the casette and the 
profile, and data sets containing the training data of one component 
only. For each training data set, the open parameters of the DSE net-
work were determined according to equation (6). Subsequently, the 
performance of the networks was evaluated using the corresponding 
testing data sets. The accuracy of scatter predictions was quantified 
using the mean absolute percentage error (MAPE) with respect to the 
ground truth MC scatter estimate as figure of merit.
Additionally, two conventional scatter estimation approaches were 
implemented as reference: the kernelbased scatter estimation (KSE) 
[47], and the hybrid scatter estimation (HSE) [55]. These approaches 
derive the scatter estimate as a convolution of a scatter kernel G, 
with a p · e−p image:

Similar to DSE, KSE determines the open parameters of G in such 
a way that the scatter predictions fit the MC scatter estimates of a 

training data set. Once the kernel is determined, it is used for any 
subsequent scatter prediction. HSE, in contrast, recalibrates the ker-
nel G for any sample to be processed. In order to achieve a reason- 
able computational performance, only a very coarse MC simulation 
is used for this recalibration.
Since there is no scatter ground truth for measured data, a slit scan 
acquisition with a narrow collimation was performed as a reference 
to evaluate the performance of the scatter correction.

5 Results
5.1 Simulation Study
Exemplary KSE, HSE and DSE scatter estimates for the the six inves-
tigated components are shown in figure 9. A quantitative evaluation 
of all testing data is given in table 3.
Considering a training using the data of all components, KSE shows 
the lowest accuracy with errors ranging from 15.4 % (casting) to 
51.3  % (impeller). Since HSE calculates a distinct parameter set for 
every sample, the MAPE is decreased to values between 2.0 % (pro-
file) and 8.1 % (cassette). The highest accuracy can be observed for 
DSE. Here, the scatter prediction is almost equal to MC simulations 
with a MAPE ranging from 0.8 % (casting) to 1.4 % (cassette).
Further experiments optimized the scatter estimation for one parti-
cular component only. This led to an increase of the accuracy of KSE 
scatter predictions, especially for highly attenuating components 
(compressor, cassette, impeller). In contrast, no further improve-
ment could be observed for DSE. In any case, the accuracy decrea-
sed for components that were not contained in the training data set. 
However, there seems to be a material dependency. Training on one 
of the aluminum components only (cylinder head, casting, profile), 
also led to a reasonable performance for the other two components 
while high errors occurred for the titanium and iron components 
(compressor, cassette, impeller). Interestingly, the errors are smaller 
if training and testing are performed the other way round,
i. e. training on one of the high attenuation components and testing 
on one of the aluminum components. This might be explained by 
the fact that the high attenuation components have a wider range of  
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size projection data as input, but a downsampled 256 × 256 version. Thus, the DSE scatter estimate needs to be
upsampled prior to scatter correction.

[47]. Since DSE performed best using the p · e−p input,
only these results are shown here. For a more compre-
hensive evaluation including different inputs, the reader is
referred to reference [9].

4.2 Simulation Study

Considering a certain scatter estimation approach it is ad-
vantageous if it can be applied to different components
and different acquisition conditions without major adjust-
ments. The potential of DSE to do so, was investigated
using CT simulations based on the models shown in fig-
ure 8. Given the prior model, artificial projections were
generated as:

psim = − ln

(
I +Np + SMC

I0

)
, (7)

with I being the polychromatic forward projection of the
prior model, Np being Poisson distributed noise, I0 being
the flat field image, and SMC being the distribution of
scattered x-rays that was calculated using our in-house
Monte Carlo software. For each component a training data
set and a testing data set was simulated according to the
parameters given in table 2. To ensure that the training
data does not resemble the testing data, it was generated
using different tube voltages, different tilt angles of the
component and different scaling factors.

4.3 Measurements

To test the application of DSE to real data, measurements
of an aluminum profile were performed at our in-house

TV1: Compressor wheel (Ti) TV2: Cylinder head (Al) TV3: Casting (Al)
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Figure 8: CAD models that were used for the generation
of artificial CT data.

table-top CT system which is equipped with a Varian 4030
flat detector and a Hamamatsu micro-focus x-ray source.
There are several strategies to generate suitable training
data for these measurements. Probably the most accurate
way is to derive the training data from reference measure-
ments, e.g. measurements with and without anti-scatter
grid or with and without collimation. However, practi-
cally it is difficult to acquire a huge amount of data fol-
lowing this strategy. Therefore, simulated training data
were generated using the prior models shown in figure 8.
In contrast to the simulation study described in the previ-
ous section, the simulations were designed to resemble the
measurement data in terms of the acquisition geometry
and the acquisition conditions using the models that have
been developed for the SBAC (see section 3).
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Figure 8: CAD models that were used for the generation of artificial CT 
data.

 SKSE = G ∗ (p · e−p).  (8)

Table 2: Parameters of the simulation study.

Parameter Training Testing

Models (see figure 8) TV1–TV6 TV1–TV6

Source-to-isocenter distance 250 mm, 375 mm, 500 mm 250 mm, 375 mm, 500 mm

Source-to-detector distance 1000 mm 1000 mm

View angle 0º – 360º, ∆α = 10º 0º– 360º, ∆α = 10º

Detector elements 1024 × 1024 1024 × 1024

Detector pixel size 0.4 mm x 0,4 mm 0.4 mm x 0,4 mm

Tube voltage 150 kV, 200 kV, 300 kV 250 kV, 350 kV

Prefilter 1 mm Sn 1 mm Sn

Detector material 1 mm CsI 1 mm CsI

Object scaling factor 0.9, 1.1 1.0

Object tilt angle 0º, 18º, 72º 36º, 54º

Object material A1 (TV2,  TV3,  TV5),  Ti  (TV1),  Fe (TV4, TV6) A1 (TV2, TV 3, TV 5), Ti (TV1) Fe (TV4, TV 6)

Samples 11664 for every component 2592 for every component
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Figure 9: Percentage error of KSE, HSE and DSE scatter estimates for different components. KSE and DSE were
optimized using a training data set containing all components. HSE was optimized directly for the test data.
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Figure 9: Percentage error of KSE, HSE and DSE scatter estimates for different components. KSE and DSE were optimized using a training 
data set containing all components. HSE was optimized directly for the test data.
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Figure 10: Scatter corrected CT reconstructions of simulated data. The simulations were performed with a tube
voltage of 250 kV. Scatter was estimated using KSE, HSE and DSE and subtracted in intensity domain to get a
corrected data set. Prior to reconstruction the projections were precorrected such that they represent intersection
lengths. Therefore, an ideal reconstruction has a CT value equal to 1.
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Figure 10: Scatter corrected CT reconstructions of simulated data. The simulations were performed with a tube voltage of 250 kV. Scatter was 
estimated using KSE, HSE and DSE and subtracted in intensity domain to get a corrected data set. Prior to reconstruction the projections 
were precorrected such that they represent intersection lengths. Therefore, an ideal reconstruction has a CT value equal to 1.
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possible projection values that potentially improves the generaliza-
tion of the scatter estimation.
Furthermore, it has to be noted that training  DSE only on data of two 
components, i.e. the profile and the cassette, yields considerably ac-
curate scatter predictions (maximum MAPE of 3.2 %) for any other 
component. This suggests that DSE needs to be trained on only a 
few representative components to be applicable to any other mea-
surement.
To demonstrate the impact of scatter correction on CT images, CT 
reconstructions were performed for the testing data. For each case 
scatter was estimated use KSE, HSE, and DSE and subtracted in in-
tensity domain. To account for beamhardening, an analytic beam-
hardining correction was applied prior to the reconstruction. The 
corresponding results are shown in figure 10. Here, all three scatter 
estimation approaches lead to a significant improvement of the CT 
values. However, KSE tends to overestimate scatter in regions with 
a high scatter-to-primary ratio. Consequently, the attenuation of the 
scatter corrected projection data is overestimated as well, which 
leads to bright streaks in the CT reconstruction. Being recalibrated 
for every projection, HSE can further improve image quality but 
cannot completely account for all scatter artifacts. DSE, in contrast, 
leads to CT images that are almost equal to the scatter free ground 
truth.

5.2  Measured Data
To evaluate the potential of DSE as well as the reference approaches 
for real data, measurements were performed at our in-house table-
top CT. Due to the absence of a ground truth scatter distribution, a 
slit scan, which was collimated to 16 detector rows, was performed 
as reference. 
Similar to the simulation study, corrected projection data were cal-
culated by subtracting the scatter estimate in intensity domain prior 
to the reconstruction. In addition to KSE, HSE, and DSE, a MC- based 
scatter correction was performed. The corresponding results are 
shown in figure 11.
Visually, all scatter estimation approaches are able to reduce the 
scatter-related artifacts. However, especially KSE and HSE lead to 
the introduction of bright streaks to the CT images. In contrast, DSE 
shows a similar accuracy as Monte Carlo and provides CT images 
that are almost equal to the slit scan.
A quantitative evaluation of the MAPE with respect to the slit scans 
yields similar trends. Here the following errors can be measured: 
30.0 % (no correction), 15.9 % (KSE), 13.2 % (HSE), 6.0 % (DSE), and 
5.8 % (MC). 
However, compared to the simulation study the performance of DSE 
seems to be slightly lower. This may be explained by the fact that 
the slit scan is not completely free of scatter. Furthermore, it has to
be noted that there may be additional effects causing artifacts (e. g. 
detector backscattering), which are currently not considered. 

Table 3: Mean absolute percentage error of KSE, HSE and DSE scatter estimates for different components and different training data sets (left column). 
Note that there are no training data for HSE as its parameters are optimized for every sample to be processed.

Testing 
Compressor Cylinder Head Casting Cassette Profile Impeller

Training

KSE

Compressor 15.4 21.6 20.8 24.3 18.9 22.8

Cylinder Head 53.0 14.6 16.3 79.5 15.1 73.7

Casting 34.2 15.3 15.2 60.6 16.7 63.1

Cassette 17.5 29.9 29.1 17.3 26.9 14.9

Profile 31.5 13.9 14.1 56.7 13.7 59.3

Impeller 18.1 31.2 30.3 17.2 28.2 14.6

Profile & Cassette 26.4 15.7 15.4 47.2 13.9 49.4

All Parts 27.8 15.5 15.4 49.5 14.8 51.8

HSE

- 7.7 5.6 3.5 8.1 2.0 5.6

DSE

Compressor 1.3 6.1 4.0 4.3 5.3 3.8

Cylinder Head 28.1 1.0 3.8 38.1 4.9 23.4

Casting 16.3 2.3 0.9 24.9 2.1 14.3

Cassette 3.0 5.2 3.3 1.4 3.5 1.5

Profile 35.6 3.5 1.9 48.6 1.3 24.9

Impeller 5.3 8.7 5.3 4.8 6.2 1.1

Profile & Cassette 2.1 3.2 1.8 1.5 1.8 1.7

All Parts 1.2 0.9 0.8 1.4 0.9 1.1
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6. Summary and Conclusion
Today, xray CT finds a variety of industrial applications ranging from 
dimensional inspection and flaw detection to reverse engineering. 
However, the measurement of highly attenuating or multi-material 
components remains a major challenge as the corresponding CT re-
constructions are often corrupted by CT artifacts. Two approaches 
that can potentially overcome this limitation are presented in this 
manuscript: the simulationbased artifact correction(SBAC) and the 
deep scatter estimation (DSE). The SBAC provides a very general 
frame work to correct CT artifacts using precise simulations of the 
CT measurement process. In this way, the SBAC accounts for any ar-
tifact that is modeled appropriately by the CT simulation. Here, the 
potential of the SBAC was demonstrated for the correction of beam 
hardening, xray scattering, offfocal radiation, partial volume eects 
and cone-beam artifacts. For measurements of single- and multi-
material components, the SBAC provided CT reconstructions that 
showed almost no artifacts and whose quality was clearly superior 
to common reference approaches. Furthermore, it could be shown 
that the SBAC not only increases the visual impression of the CT  

reconstructions, but also their dimensional accuracy. Surface 
meshes extracted from SBACcorrected CT reconstructions revealed 
only minor deviations from tactile measurements, the gold standard 
in dimensional metrology. Thus, the SBAC contributes to extending 
the applicability of CT in the field of industrial metrology and to esta-
blishing CT as an alternative to tactile measurements even for highly 
attenuating components. 
In the context of scatter artifact correction, the DSE was developed 
to solve the problem of long processing times of accurate scatter 
estimation approaches. Therefore, DSE trains a deep convolutional 
neural network to reproduce MC scatter simulations based on the 
measured projection data. Once, the network is trained, it can be ap-
plied to unknown data in realtime (≈ 10 ms / projection). In contrast 
to conventional approaches, DSE does not rely on a certain theoreti-
cally motivated scattering model, but learns the most suitable model 
itself from observational data. This is especially an advantage if a 
certain scatter estimation approach needs to be adapted to novel 
data, e. g. data that have been acquired with different acquisition 
parameters or at a different system. While conventional approaches 
might require to refine the underlying theoretical model, DSE can 
be adapted by simply exchanging or extending the training data set.
In order to demonstrate the practical applicability of DSE, dierent 
simulation studies and measurements were carried out. Here, the 
simulation study demonstrated that DSE generalizes well to different 
tube voltages, different materials, as well as different components. 
In particular, it could be shown that DSE is clearly superior to con-
ventional reference methods and provides scatter distributions that 
deviate on average by less than 2 % from MC simulations. Further-
more, these experiments suggest that a single DSE network, trained 
on representative data, can be used universally for different scatter 
estimation tasks. 
A similarly good performance could be observed for measured data 
of an experimental CT system. Here, DSE provided scattercorrected 
CT reconstructions whose quality was almost equal to slit scan mea-
surements. Furthermore, this study demonstrated that a DSE net-
work, trained on simulated data, also applies to measured data.This 
is of particular importance as simulation is an easy way to generate 
an arbitrary number of training examples.
However, it has to be noted that several efforts have been made here 
to tune the simulations to reproduce measurements of the experi-
mental CT system. To which extent the simulation must match the 
measured data is the subject of further investigations.
Obviously, if a sufficiently accurate simulation is practically not pos-
sible, DSE can also be trained using measured data, e. g. of a slit scan 
or a beam blocker measurement. Conceptually, there are no restric-
tions for the generation of training data.
Thus, DSE makes an important contribution to improve the accuracy 
of xray scatter correction, especially in case of timecritical appli-
actions such as inline-CT measurements, which require real-time 
capable correction approaches.
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Figure 11: Scatter corrected CT reconstructions of measured data. Scatter 
was estimated using KSE, HSE, DSE as well as a MC simulation. Prior to 
reconstruction the projections were precorrected such that they represent 
intersection lengths. Therefore, an ideal reconstruction has a CT value 
equal to 1.
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Figure 11: Scatter corrected CT reconstructions of mea-
sured data. Scatter was estimated using KSE, HSE, DSE
as well as a MC simulation. Prior to reconstruction the
projections were precorrected such that they represent in-
tersection lengths. Therefore, an ideal reconstruction has
a CT value equal to 1.

mance of DSE seems to be slightly lower. This may be
explained by the fact that the slit scan is not completely
free of scatter. Furthermore, it has to be noted that there
may be additional effects causing artifacts (e.g. detector
backscattering), which are currently not considered.

6 Summary and Conclusion

Today, x-ray CT finds a variety of industrial applications
ranging from dimensional inspection and flaw detection
to reverse engineering. However, the measurement of
highly attenuating or multi-material components remains
a major challenge as the corresponding CT reconstruc-
tions are often corrupted by CT artifacts. Two approaches

that can potentially overcome this limitation are presented
in this manuscript: the simulation-based artifact correc-
tion (SBAC) and the deep scatter estimation (DSE). The
SBAC provides a very general framework to correct CT ar-
tifacts using precise simulations of the CT measurement
process. In this way, the SBAC accounts for any artifact
that is modeled appropriately by the CT simulation. Here,
the potential of the SBAC was demonstrated for the cor-
rection of beam hardening, x-ray scattering, off-focal radi-
ation, partial volume effects and cone-beam artifacts. For
measurements of single- and multi-material components,
the SBAC provided CT reconstructions that showed al-
most no artifacts and whose quality was clearly superior
to common reference approaches. Furthermore, it could be
shown that the SBAC not only increases the visual impres-
sion of the CT reconstructions, but also their dimensional
accuracy. Surface meshes extracted from SBAC-corrected
CT reconstructions revealed only minor deviations from
tactile measurements, the gold standard in dimensional
metrology. Thus, the SBAC contributes to extending the
applicability of CT in the field of industrial metrology and
to establishing CT as an alternative to tactile measure-
ments even for highly attenuating components.

In the context of scatter artifact correction, the DSE
was developed to solve the problem of long processing
times of accurate scatter estimation approaches. There-
fore, DSE trains a deep convolutional neural network to
reproduce MC scatter simulations based on the measured
projection data. Once, the network is trained, it can be
applied to unknown data in real-time (≈ 10 ms / projec-
tion). In contrast to conventional approaches, DSE does
not rely on a certain theoretically motivated scattering
model, but learns the most suitable model itself from ob-
servational data. This is especially an advantage if a cer-
tain scatter estimation approach needs to be adapted to
novel data, e.g. data that have been acquired with differ-
ent acquisition parameters or at a different system. While
conventional approaches might require to refine the under-
lying theoretical model, DSE can be adapted by simply
exchanging or extending the training data set.

In order to demonstrate the practical applicability of
DSE, different simulation studies and measurements were
carried out. Here, the simulation study demonstrated that
DSE generalizes well to different tube voltages, different
materials, as well as different components. In particular,
it could be shown that DSE is clearly superior to con-
ventional reference methods and provides scatter distribu-
tions that deviate on average by less than 2 % from MC
simulations. Furthermore, these experiments suggest that
a single DSE network, trained on representative data, can
be used universally for different scatter estimation tasks.

A similarly good performance could be observed for
measured data of an experimental CT system. Here, DSE
provided scatter-corrected CT reconstructions whose qual-
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